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Abstract

We present in this article a novel analytical method that enables the application of nonparametric rank-order statistics to fMRI data
analysis, since it takes the omnipresent serial correlations (temporal autocorrelations) properly into account. Comparative simulations,
using the common General Linear Model and the permutation test, confirm the validity and usefulness of our approach. Our simula-
tions, which are performed with both synthetic and real fMRI data, show that our method requires significantly less computation time
than permutation-based methods, while offering the same order of robustness and returning more information about the evoked response
when combined with/compared to the results obtained with the common General Lineal Model approach.
� 2007 Elsevier Inc. All rights reserved.
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1. Introduction

The tools that are employed for fMRI data analysis can
be divided in two main categories: model-based and model-
free tools. The best known representative of the former is
the General Linear Model (GLM) [1]. A GLM represents
every effect assumed to be present in the recorded fMRI
signal by a single regressor that, in addition, is convolved
with a so-called haemodynamic response function (HRF)
to model the haemodynamic delay of the brain [2]. This
GLM can be solved with the ordinary least squares
(OLS) method to obtain the regression coefficients for each
voxel which, when properly combined with the regression
error, returns a single t-value that expresses the responsive-
ness of the corresponding voxel.

While it has proven very successful and useful, this
GLM approach should be applied with care given the
assumptions behind it. One such point of concern is
1090-7807/$ - see front matter � 2007 Elsevier Inc. All rights reserved.

doi:10.1016/j.jmr.2006.12.001

* Corresponding author. Fax: +32 16 345960.
E-mail addresses: patrick.demaziere@med.kuleuven.be (P.A. De

Mazière), marc.vanhulle@med.kuleuven.be (M.M. Van Hulle).
whether the non-linear relationship between the fMRI
measurements and the neuronal activity is correctly
mapped by the assumed linear transform model, on which
the GLM relies [3,4]. Another point of interest concerns the
question whether the recorded data can be analysed using
Gaussian tests [5,6]: the GLM’s residue must have a Gauss-
ian distribution to obtain a valid analysis [7]. Also the com-
monly applied Gaussian Random Field theory (GRF, [8])
or the recently developed Discrete Local Maxima (DLM,
[9]), which are used to assess the statistical significance, rely
on assumptions of Gaussianity. To meet this assumption,
one often uses a (Gaussian) smoothing as a pre-processing
step (see, e.g., [10]). In addition, it is proven that the OLS
renders too optimistic results [11].

Given these concerns, and the fact that nonparametric
tests are the only kind of tests that are invariably valid
and exact when the nature of the data is unknown [5], we
explore the application of nonparametric tests. Albeit that
there already exists a fair amount of literature on the appli-
cation of nonparametric tests to fMRI, the largest share
deals with nonparametric alternatives to the GRF. Only
a small fraction deals with the detection of activation.
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The Kolmogorov–Smirnov test (KS) and the Mann–Whit-
ney test (MW) are often mentioned within this context
[6,12], and are included in some fMRI analysis tools, e.g.,
Lyngby [13] and AFNI [14]. However, the presence of seri-
al correlations (temporal autocorrelations) invalidates the
straightforward application of these nonparametric tests
to fMRI data [6].

We propose in this article an extension to rank-order
tests for handling the serial correlations issue properly, so
that these tests can be applied to fMRI. We investigate
the following rank-order tests in this article: the Mann–
Whitney test (MW), the Kolmogorov–Smirnov test (KS),
and the Cramér–von Mises test (CvM). The article’s struc-
ture is as follows: we first introduce the data sets used for
the validation and comparison of our novel extension with
some existing analysis methods, followed by a brief review
of the properties of the implemented tests, and how non-
parametric statistics are to be applied to fMRI data. Next,
we introduce the proposed extension and evaluate it using
the permutation test as a reference, together with the pop-
ular GLM technique. Finally, we consider a number of
analyses of real fMRI data, discuss our findings and formu-
late our conclusions.
2. Materials and methods

2.1. Synthetic and real fMRI data sets

The synthetic data sets are created by autocorrelating
Gaussian noise using a first order autoregressive model
(AR(1)) that very closely resembles the autocorrelation
structure of real fMRI data. The scheme used to create
these data sets is analogous to that presented in Gautama
and Van Hulle [11]: N ¼ 10; 000 time series x(t) of length
T ¼ 420 are generated using an AR(1) model by imple-
mentation of the formula xðtÞ ¼ q1 � xðt � 1Þ þ uðtÞ where
u(t) represents a white Gaussian noise (WGN) source.1

The value q1 is set to 0.4, a value which is very representa-
tive for fMRI signals [15].

We use also two real world fMRI data sets. One is the
publicly available fMRI null data set created by the Brain
Mapping Unit (University of Cambridge, UK), and is com-
monly referred to as the ‘‘BAMM’’ data set. The other one
is data coming from a real activation study performed by
Vanduffel and colleagues as described in Vanduffel et al.
[16]. This study investigated which monkey brain areas
were involved during three-dimensional structure-from-
motion processing (3D-SFM). Each functional scan (time
series) consisted of gradient echo-planar whole-brain imag-
es (EPI; TR 2.3 s; TE ¼ 32 ms; 2� 2� 2 mm3 voxels;
64� 64 matrix; 32 sagittal slices).2 We applied non-linear
1 We performed the experiments using Matlab, Mathworks Inc. As
WGN source we used Matlab’s built-in random number generator.

2 TR represents the repetition time or the time between successive whole
brain scans; TE represents the time delay between excitation and echo
maximum.
realignment procedures [17,18] to these monkey images.
For the purpose of validation, no additional smoothing
was applied, except for the one introduced during the
realignment.

We use only the synthetic and BAMM data sets for the
quantitative evaluation. To obtain useful fMRI signals, we
first realigned the BAMM images using the SPM99 soft-
ware [19]. Next, we applied the brain extraction tool of
FSL [20] to obtain grey matter images from which the time
series are extracted in random order. For the BAMM data
set, pre-processed time series were concatenated to obtain
noise time series of the right length, i.e., 420 values. For
the synthetic data set, we set TR ¼ 3 s, a value identical
to that of the BAMM data set. These time series—both
the ones extracted from the BAMM images and the syn-
thetic ones—are detrended using a second order polynomi-
al and standardised, i.e., with zero mean and unit variance.
Active time series are then simulated by adding an on–off
block-pulse to these signals (synthetic/BAMM) in a ratio
1:noise-level. We varied the noise-level in our experiments
from 2 to 8 in steps of 0.5. The used block-pulse contains
14 alternating blocks of activity (on) and inactivity (off).
Each block contains 30 values. Activity is represented by
ones and inactivity by zeroes. We thus mimic 14 epochs
of 30 scans each, summing up to a total length of 420 val-
ues. Whenever HRF modelling is applied, a haemodynamic
delay (HD) of 7 s was chosen. The HRF employed to per-
form this modelling, and with which the block-pulse is con-
volved, is the one used in SPM99 (parameter values for this
HRF can be found in, e.g., Worsley et al. [15]).

2.2. GLM-based fMRI data analysis

To properly express the brain activity using the standard
GLM approach we need accurate estimates of the GLM
parameters to obtain an accurate statistical t-value, and
in turn a proper marking of the active brain regions as fully
explained in, e.g., [15]. In the remainder of this paper, we
represent a GLM mathematically by V ¼ Xbþ e, with V
the fMRI signal, X the design matrix containing the regres-
sors, e the error which is assumed to have a normal distri-
bution, and b the regression coefficients to be estimated.

To obtain such accurate estimates, one must correct for
the presence of serial correlations in fMRI signals, either by
‘‘colouring’’ the data with a band-pass filter [21], or by
using a two-step pre-whitening method: first, one applies
an OLS to obtain b and e, of which the serial correlation
is estimated (see Section 2.3). Second, one uses this serial
correlation estimate to perform a decorrelation of both
the fMRI signal V, and (column-wise) of the GLM’s design
matrix X, prior to the final calculation of b and e. This two-
step method is referred to as the Durbin–Watson method
[7,22]. In case one applies this method iteratively to reduce
the remaining serial correlation, it is referred to as the
Cochrane–Orcutt method (OLS-CO) [7,23]. In fMRI, the
Durbin–Watson method is frequently applied since
Bullmore et al. noted that the improvements gained by
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the Cochrane-Orcutt method are rather limited [24]. The
pre-whitening method is advised whenever the serial
correlation is accurately known, since it returns the best
linear unbiased estimates (BLUE) of the GLM parameters
[25] and thus a more accurate estimation of the brain
activity.

The t-value is then calculated as the product of b and the
contrast c divided by a term that is function of e [21]. The
contrast vector c specifies which stimuli (represented by 1s)
are compared to which other stimuli (represented by �1s),
and which stimuli are not considered at all (represented by
0s). We further refer to this method as OLS-(CO)/t.
2.3. Serial correlations and (rank-order) statistical tests

Obviously, the efficiency of the pre-whitening method is
determined by the accuracy of the serial correlation estima-
tion. For this reason, and since such estimation is fundamen-
tal to our novel method as well, we first review here the
estimation of serial correlations, a topic which has attracted
quite some attention in fMRI literature: e.g., [11,21,25,26].

If Eq. (1) represents a time series x(t) with t ¼ 1; . . . ; T ,
whose autocorrelation is modelled by an autoregressive
model of order kðARðkÞ; k < T Þ, the raw autocorrelation
estimate, q̂s, at lag s is given by Eq. (2):

xðtÞ ¼ q1xðt � 1Þ þ q2xðt � 2Þ þ � � � qkxðt � kÞ þ uðtÞ ð1Þ
where uðtÞ is normally distributed with

�uðtÞ ¼ 0; r2
uðtÞ ¼ constant 8t;

ruðtÞuðt�sÞ ¼ 0 8t; 8s 6¼ 0

q̂s ¼
PT

t¼sþ1xðtÞ xðt � sÞPT
t¼1x2ðtÞ

; s 2 N;

x unit standardised: ð2Þ

While s expresses the time over which the value of a time
series x at time t is influenced by another one, qj expresses
the amount of that influence at lag j. With respect to fMRI,
q and the lag for which the autocorrelation value is the
highest depend, among other factors, on the value TR,
which varies between 2 and 7 s for human fMRI studies.
Higher TR values are typical for older data sets, while
smaller TR values are used more recently due to the ad-
vanced MRI scanner technology. Serial correlations cannot
be neglected whenever TR drops below 5 s. Bullmore et al.
has stated that AR(1) models are appropriate for model-
ling these autocorrelations [27]. Recently, some authors
have proposed methods to correct for serial correlations
using AR models up to an order of four [15]. The need
for such corrections has been called into question by Wool-
rich et al., who demonstrated that the order of valuable AR

models varies between 0 and 5, but with only a few voxels
requiring an order greater than 2 [25].

Several authors [11,25,27] have suggested additional
routines to increase the accuracy delivered by the raw serial
correlation estimate. Examined methods embrace single
and multi-tapering in combination with high-pass filters,
non-parametric estimation techniques, usage of the partial
autocorrelation coefficient (PACF, [28,29]) and autoregres-
sive parametric models with k > 1. Woolrich et al. found
that a high-pass filter in combination with a single Tukey
taper performed best [25].

Given the fact that we are considering only box car
designs in this paper, we prefer the autoregressive model
estimator given its simplicity. In addition, we use the
PACF to determine the best value for k. Indeed, when fit-
ting an AR(k) model to the time series, the last partial
coefficient, ak, measures the excess correlation at lag k

not accounted for by an AR(k � 1) model. ak plotted for
all k is the PACF. The lowest value of k for which ak is
not significantly different from zero (using Bartlett’s 95%
confidence limits of approximately �2=

ffiffiffiffi
T
p

) then specifies
the order to be used. We prefer Bartlett’s test [30] since it
can test every individual (partial) autocorrelation coeffi-
cient for being significantly different from zero or not. Con-
versely, the better known Box–Pierce Q-statistic tests
whether all (partial) autocorrelation coefficients are derived
from a white noise process. For Bartlett’s test, the confi-
dence intervals are calculated as follows: if a series of
length T is generated by a white noise process, the estimates
of the (partial) autocorrelation coefficients are approxi-
mately normally distributed random variables with zero
mean and variance 1/T. The confidence limits are then
equal to �z1�a=2=

ffiffiffiffi
T
p

, with a the desired significance level
and z the percent point function of the standard normal
distribution. For a 95% confidence interval these limits
approximate �2=

ffiffiffiffi
T
p

.
As an illustration, we show the amount of autocorrela-

tion present in the BAMM data set as a function of the
lag s assuming an AR(1) model. For this purpose, we
selected at random 1000 signals from the BAMM data
set, which is pre-processed as explained in Section 2.1.
Next, Eq. (2) is used to calculate q̂s for s ¼ 0; . . . ; 14 for
each signal. The average of the 1000 obtained q̂s values is
then displayed in Fig. 1. Necessarily, a value of one is
obtained for lag zero. From the literature (e.g., [15]), and
confirmed by Fig. 1, it is clear that in general the amount
of autocorrelation does not exceed q̂ ¼ 0:4 at lag 1, while
the serial correlations at higher lags decrease rapidly when
using an AR(1) model. The autocorrelation structure
depicted in our figure, including the strange effect that
the autocorrelation becomes negative for higher lags, cor-
responds very well with previous findings for fMRI data
as reported by, e.g., Bullmore et al. [27].

2.4. Nonparametric tests for analysing fMRI data

We opt for rank tests that are based on an empirical dis-

tribution function (EDF), since they are known to be the
most powerful nonparametric ones [31], and since they
can be easily extended to handle serial correlations (cf.
infra). Both the KS- and CvM-test are EDF tests [31].
The MW-test is not, but its statistical values are obtained
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Fig. 1. Autocorrelation plot of the BAMM fMRI null data set. The figure
is created by randomly drawing 1000 signals from this data set and
plotting the average q̂ as a function of s using an AR(1) model (see text).
The dashed lines represent one standard deviation. The horizontal dash
dotted lines are Bartlett’s approximate 95% confidence interval (�2=

ffiffiffiffi
T
p

).
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in a very similar manner, and we therefore include that one
too. The theoretical formulae behind these tests are given
in Appendix A.

In order to apply nonparametric tests to fMRI data, the
data points must be reorganised in a specific way whenever
multi-condition (P 2) paradigms or contrasts are used.
The reorganisation we propose here is suited for any non-
parametric test that is able to compare two samples of data
points (fX ig and fY ig) that possibly contain an unequal
number of data points. To explain the method, we use
the following example: a study contains six experimental
conditions labelled A through F, and the desired contrast
equals: Aþ Bþ D� E. In order to test for a significant dif-
ference between the evoked response of conditions A, B

and D versus the response of condition E, we put in sample
fX ig all data points recorded under conditions A, B and D,
while fY ig contains those recorded under condition E. The
fact that one sample can contain more data points than the
other one is correctly dealt with by the respective statistical
tests, thus omitting the need to balance the samples. In the
case where HRF-convolved time series are used, we have
opted for a very simple approach to cope with the haemo-
dynamic delay: we skipped the transitional scans from the
actual statistical analysis, i.e. the first dHD=TRe data
points3 of every epoch.
2.4.1. Assumptions with rank-order tests

Three assumptions need to be satisfied when applying
the KS-, CvM- and MW-tests [31]: the measurement scale
should be ordinal, the random variables should be contin-
uous, and the data points should be exchangeable. Due to
serial correlations within fMRI signals, all assumptions but
3 dxe � smallest integer P x.
the third are fulfilled: since the theoretical significance
thresholds for EDF tests are calculated under the assump-
tion of white noise, these tests fail when applied to autocor-
related data. In the next section we therefore introduce our
novel extension for handling correlated data.

2.4.2. The permutation test
The permutation test, which is used as a reference for

our method, was introduced by Holmes et al. for PET data
[5], and later on extended for fMRI. A discussion of per-
mutation tests for fMRI data can be found in Nichols
and Holmes and references therein [32]. The permutation
test we adopted is the one proposed by Liu et al. [33]. It
uses the data itself to extract a proper null distribution,
which is used to calculate the proper significance thresh-
olds. For this reason, the permutation test is a better refer-
ence than the overly optimistic OLS/t-test [11]. This
permutation test in fact randomises the labels (conditions),
instead of the data values themselves, to ensure that the
temporal autocorrelation structure is preserved within each
permuted time series. To obtain a reliable null distribution,
we opted to draw 1000 permutations for each synthetic/
BAMM fMRI signal. The statistical significance value for
a permutation test is obtained as follows: the statistical
value (OLS/t, MW, KS, or CvM) is calculated for every
permuted fMRI signal using the identical experimental
paradigm and contrast. The p-value for the original,
non-permuted signal is then the proportion of the distribu-
tion that is at least as extreme as the observed test. Given
the layout of this algorithm, the time complexity is
P ¼ 1000 times that of the statistical test itself, with P being
the number of permutations performed. The time complex-
ity for a whole brain analysis equals then N � P � Q, with
N the number of voxels, and Q the statistical test’s
complexity.

2.5. Novel extension for EDF-like tests to handle serial

correlations

At least to the best of our knowledge, we developed a
completely novel extension for EDF-based tests to correct
for serial correlations. It depends on the value smax, which
represents the maximum lag one wants to correct for. The
value of smax can be determined using the PACF and Bart-
lett’s approximate 95% confidence interval: first, the PACF
(Section 2.3) is applied to find the best value for k, with
AR(k) the model used to fit the fMRI signal. Next, we
again use Bartlett’s approximate confidence interval to
define smax as the highest lag for which the amount of auto-
correlation is still significantly different from zero [27]. This
confidence interval is represented in Fig. 1 by horizontal
dash dotted lines. Our extension is applicable to any value
of smax. For the sake of clarity, and without loss of gener-
ality, we use a contrast equal to A � B, and apply a unit lag
autocorrelation correction (smax ¼ 1). According to the
method of Section 2.4, the fMRI signal V is split into the
samples fX ig and fY ig. We consider only fX ig, since
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fY ig can be treated analogously. We divide fX ig into
smax þ 1 ¼ 2 parts, labelled fX 1�

i g and fX 2�
i g:

X 1�
i ¼ X 2k; k ¼ 1; . . . ; bN X=ðsmax þ 1Þc;

X 2�
i ¼ X 2kþ1;

ð3Þ

with bxc � largest integer 6 x. This partitioning sees to it
that fX 1�

i g (or fX 2�
i g) no longer has the original unit lag

correlation, and becomes thus exchangeable. For both
fX 1�

i g and fX 2�
i g (and fY 1�

i g and fY 2�
i g), one can calculate

the p-values using the MW-, KS-, or CvM-test. To obtain a
single p-value for the complete fMRI signal, we need to
combine the different ðsmax þ 1Þ p-values. Two possible
solutions are discussed in this article: (a) a simple multiple
comparison correction (MCC) method and (b) an algo-
rithm from the meta-analysis domain. Meta-analysis, ‘‘the
analysis of analyses’’, which is quite often used in the field
of experimental psychology, is the statistical analysis of a
large collection of analysis results from individual studies
for the purpose of integrating the findings. In fact, even
p-values obtained by applying different statistical tests
can be combined, as long as the hypothesis is identical.
We first discuss both methods theoretically and then show
the results obtained with each of them.
2.5.1. MCC method to combine p-values

Given the idea that the different p-values are obtained by
performing identical tests, the evidence for using MCC is
rather clear. Personal communication with Benjamini and
Yekutieli—the authors of the False Discovery Rate
(FDR) technique [34]— confirmed that a simple ’’Simes
FDR test for the intersection hypothesis’’ is valid for
obtaining a single corrected p�-value:

(a) Order the p-values as follows: p1 6 p2 6 � � �6 pðsmaxþ1Þ.

(b) 8i; 9jjp� ¼ pj � ðsmax þ 1Þ=j and pj P maxi pi � j
i

� �� �
.

2.5.2. Meta-analysis to combine p-values
A good introduction to meta-analysis can be found in

Wolf [35]. We selected the Stouffer combined test [35,36]
given its simplicity and rather straightforward implementa-
tion, which avoids logarithmic transformations or adjust-
ments of the degrees of freedom. The Stouffer combined
test converts each ‘‘partial’’ pi-value into a z-value; since
every pi-value has an identical probability for occurring,
the pi-values are uniformly distributed and can be trans-
formed into z-values under the null hypothesis. Compared
to the classic meta-analysis approach, where t-values
are summed, this approach is slightly more powerful
[35]. If we denote the z-value derived from the pi-value
by zi, we can calculate the global z-value, denoted by
z�, as:

z� ¼
Xsmaxþ1

i¼1

ziffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
smax þ 1
p ; i ¼ 1; . . . ; ðsmax þ 1Þ; ð4Þ
where smax þ 1 equals the number of combined tests, thus
the number of partial samples examined. The global p-val-
ue, p*, can easily be derived from this z�. Besides its com-
putational simplicity, the Stouffer combined test offers
another, more conceptual advantage: the t-maps, as creat-
ed by the GLM-based analysis tools, are easier to compare
to the calculated z-values, than to the statistical values ob-
tained by the FDR extension (MW, KS, or CvM values).
However, we still have to verify whether the different pi-val-
ues, extracted from the different partial time series, are
exchangeable, as required for a valid meta-analysis. Exper-
iments carried out in the next section will verify this
assumption.

3. Results of the validation and comparison experiments

In order to validate and compare the proposed exten-
sions to existing tools like the GLM and the permutation
test, we calculate and display both the true and false
positive rates (FPR and TPR, respectively) and the
receiver–operator characteristic (ROC) curve: for the
FPR scenario, a bare noise signal (synthetic/BAMM) is
used to which no block-pulse (see Section 2.1) is added
but which is analysed as if a block-pulse were present
(using noise-level ¼ 1 and smax values in the discrete
range [0, 5], with smax ¼ 0 representing no serial correla-
tion correction at all). A rejection of the null hypothesis,
which states that no activation is present, is therefore a
false positive. For the TPR scenario, a block-pulse is
added to noise (synthetic/BAMM) in a ratio 1:noise-level
(with noise-level varying between 2 and 8 in steps of 0.5)
and examined as such. A rejection of the same null
hypothesis now refers to a true positive. Every statistical
value (or the thereof derived values and conclusions) is
based on 10,000 time series or iterations, which allows
us to apply the statistically common threshold of 0.01.
This nominal a guarantees that, at least theoretically,
100 cases should pass the test, which is a significantly
perceptible amount. Given the exactly known properties
of the synthetic data set, we use this data set to examine
the validity of both extensions; we use the BAMM data
set to illustrate the extension’s capabilities with respect to
real fMRI data, i.e., fMRI noise. In order to introduce
all tests and demonstrate the serial correlation problem,
we first display the uncorrected statistical tests using
white Gaussian noise (WGN), and the synthetic and
the BAMM data sets.

In Fig. 2(a) and (b), we show the TPR curves for all tests
without application of any serial correlation correction for
the nonparametric tests for WGN and the synthetic data
set, respectively. ROC curves for the MW- and CvM-tests
using both extensions are shown in Fig. 5 for a noise-level
equal to 5 and for smax ¼ 0; 1; 2; 3, with smax ¼ 0 meaning
no correction. As was to be expected according to [31,37],
the difference in power between the nonparametric and
parametric GLM-based tests (OLS and OLS-CO) is larger
for Gaussian data (Fig. 2(a) and (b)), than for non-Gauss-
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Fig. 2. Power of the OLS/t, MW-, KS-, and CvM-test as a function of the amount of noise (noise-level) for different kinds of noise: (a) WGN, (b) synthetic
data set, and (c) and (d) the BAMM data set with a HRF convolved block-pulse. (c) Displays the outcome when no HRF correction is applied to the
nonparametric tests, while (d) displays the outcome with a HRF correction (see text). In addition, permutation tests are referred to in the legend of (b) by a
‘P-’ that precedes the name of the used statistical test (TPR ¼ 1 corresponds to 100% true activations).
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ian data, i.e., the BAMM data set (Fig. 2(d)). Next,
Fig. 2(b) indicates that the MW- and CvM-tests have more
power than the KS-test. The corresponding FPR values for
this setup are: 0.016 (OLS-CO), 0.061 (OLS), 0.065 (KS),
0.073 (CvM), and 0.073 (MW). Based on these values
and Fig. 2(b), we can state that the MW- and CvM-tests
turned out to be more powerful than the KS-test, with
the MW-test slightly ahead of the CvM-test, since the
TPR gained is larger than the FPR lost. Given these results
and the fact that the KS- and the CvM-test have an identi-
cal hypothesis, we further omit the KS-test. This is also the
reason why we omitted ROC curves for the KS-test. Final-
ly, the bottom row of Fig. 2 demonstrates that the TPR
curves are higher for all nonparametric tests when the tran-
sitional scans are skipped (Fig. 2(d)), than when no haemo-
dynamic delay correction is applied (Fig. 2(c)). Leaving the
transitional scans out of any nonparametric analysis is thus
recommended in a case where we deal with real fMRI
signals.
3.1. Validation of the FDR extension using synthetic data

To verify the validity of our extensions, we display the
TPR curves and FPR curves using the synthetic data set.
The TPR and FPR curves for the MW- and CvM-tests
are displayed from right to left in Fig. 3. The lag we have
corrected for in the TPR figures, i.e., the value of smax, is
represented by the number behind the MW/CvM notation
in the legend. If no serial correlation correction is applied
(smax ¼ 0), no number is displayed behind the test’s abbre-
viated name in the legend of the figure. The permutation
test (represented in the legend by a ‘P-’ that precedes the
test’s abbreviated name) and the GLM-based tests are dis-
played for the sake of comparison.

Inspection of the FPR values for the uncorrected case
(smax ¼ 0 at Fig. 3(c)), teaches us that the OLS/t-test fails
for the nominal size of rejections (0.01), as expected, while
the OLS-CO/t-test better controls the FPR. The FPR
values for the uncorrected nonparametric statistical tests
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Fig. 3. TPR and FPR curves for the OLS-CO/t-, MW-, and CvM-tests using the synthetic data set. The FDR extension is used to correct for serial
correlations. (a) and (b) depict the TPR curves as a function of noise-level. The lag we have corrected for is represented by the number behind the MW/
CvM notation in the legend. If no number is given, i.e., smax ¼ 0, no correction is applied. (c) Displays the FPR values for all tests (y-axis, 1 � 100%).

144 P.A. De Mazière, M.M. Van Hulle / Journal of Magnetic Resonance 185 (2007) 138–151
deviate markedly from the nominal size. This is in agree-
ment with the statement that the number of false positives
(for the KS-test, [6]) is higher than that of the t-test. Our
simulations confirm this and extend this finding to the
MW- and CvM-tests. Considering the smax 6¼ 0 case, a sig-
nificant decrease in FPR is already visible for a unit lag cor-
rection. For a lag three correction, we see that, for both the
TPR and FPR curves, our correction method coincides
with the values obtained with the corresponding permuta-
tion tests. This implies that, using a lag three correction,
our method has the same level of performance as the per-
mutation test. Furthermore, our simulations demonstrate
that the OLS-CO/t’s FPR is slightly larger than the nomi-
nal size. This is not surprising given the fact that the OLS is
rather optimistic [11].

3.2. Validation of the meta-analysis extension using synthetic

data

We show in Fig. 4 the results obtained when applying
the meta-analysis extension instead of the FDR extension.
As could be expected, the TPR curves for the nonparamet-
ric tests are now higher than those obtained with the FDR
extension. However, the FPR curves for these tests are
(dramatically) higher too: this extension clearly fails to
control the FPR appropriately, even for a smax ¼ 5 correc-
tion. Furthermore, the TPR curves no longer coincide with
those of the corresponding permutation tests. This con-
firms that the meta-analysis extension is far too optimistic,
and consequently, not a recommended procedure for deal-
ing with serial correlations.

Separate TPR and FPR curves can be combined into
a single receiver operator characteristic (ROC, [38]). An
ROC curve is easy to interpret since a larger area
beneath the curve indicates that the considered test better
detects the true activity in the signal. The area can be
maximally equal to one (a perfect test) and should not
be less than 0.5 (the performance of a random guess).
An ROC curve is obtained by plotting the TPR and
FPR values for nominal a values in the range [0,1].
The TPR and FPR values are calculated using their
respective signals as explained in the first paragraph of
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Fig. 4. TPR and FPR curves for the OLS-CO/t-, MW-, and CvM-tests using the synthetic data set. The meta-analysis extension is used to correct for serial
correlations. (a) and (b) depict the TPR curves as a function of noise-level, while (c) displays the FPR values. The same conventions are used as in Fig. 3.
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this section. To preserve a clear display, we show in
Fig. 5 only the ROC curves for the MW-test (top row)
and CvM-test (bottom row), as obtained for synthetic
signals with a noise-level equal to 5. Again, we see that
the nonparametric statistics, which are based on the
FDR extension, have less power than the OLS-CO/t-test,
but show a performance similar to that of their corre-
sponding permutation test. This coincidence is better
than the coincidence between the OLS-CO/t-test and its
corresponding permutation test. In addition, these curves
confirm the difference between the FDR (Fig. 5, right
column) and meta-analysis extension (left column) as
already deducible from the separate TPR and FPR
curves: the ROC curves for the meta-extension are higher
on the y-axis than those for the FDR extension (higher
sensitivity), but they are also shifted to the right (lower
specificity). This shift to the right is visible by tracking
the leftmost mark of the ROC curves for the nonpara-
metric statistics: with respect to the meta-analysis exten-
sion, this mark is more to the right than the one of the
FDR extension.
3.3. Summary

Considering both extensions, we can state that the pro-
posed signal splitting scheme clearly decreases the FPR
rates, but that only the FDR extension guarantees that
the nominal size, 0.01, is achieved for reasonable smax val-
ues, and that the obtained ROC curves better match the
ones of the corresponding permutation tests. Higher smax

corrections are to be avoided given the rather limited
length of epochs in practice. We can summarise (for this
data set and using the FPR curves as primary constraint)
that only the FDR extension is suitable for fMRI analyses,
that for a smax ¼ 1 correction a better false positive control
is achieved than for the standard OLS/t-test, and that a
smax ¼ 2 correction suffices to obtain a FPR equal to that
of the OLS-CO/t-test, but that only the smax ¼ 3 correction
returns a reasonable false positives control. Considering
also the TPR curves (or ROC curves) we see that the per-
formance of the FDR extension very well coincides with
that of the corresponding permutation test, and even with
that of the GLM-based permutation test. Moreover, taking
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Fig. 5. ROC curves for the OLS-CO/t-, MW-, CvM-, and their corresponding permutation tests using synthetic signals with a noise-level equal to 5. The
top row ((a) and (b)) shows ROC curves for the MW-test, while the bottom row ((c) and (d)) contains those for the CvM-test. The ROC curves in the right
column ((a) and (c)) are obtained with the FDR extension, those of the left column ((b) and (d)) with the meta-analysis extension (see text for
interpretation).
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the time complexity into account, which is N � P � Q for
the permutation test (see Section 3), the time complexity
of a full brain analysis for our extension is only
N � smax � Q with smaxnP . This renders our extension
much faster.
3.4. The FDR extension and the BAMM data set

Using the BAMM data set, we verify how well the above
statements hold for real world fMRI data, i.e., we examine
whether a smax ¼ 3 correction using the FDR extension is
sufficient to control the FPR. To mimic as best as possible
the real world situation, we convolved the block-pulse with
the HRF, and performed the analysis accordingly. The
results of this experiment are shown in Fig. 6. We omitted
the curves for the permutation tests from these figures for
the sake of clarity. Identical to the experiment with the syn-
thetic data set, a smax ¼ 3 correction delivers again an
appropriate FPR, at least as good as the OLS-CO/t-test
(CvM), or even better (MW). Furthermore, we detect again
a decrease in power as was the case for the synthetic data
set. However, in this way we are now confident to have per-
formed a valid analysis given the nonparametric tests that
are used.
3.5. The FDR extension and real fMRI data

In this section we examine the FDR extension’s behav-
iour and properties with respect to real world fMRI data
sets containing real activity. Albeit that we do not have
any ground truth for such data, we can demonstrate some
advantages when we compare the obtained results using
FDR-extended nonparametric statistics, with those
obtained using a classical GLM-based approach.

We use the earlier described monkey data, select a single
run, and analyse it with SPM99 as described in Vanduffel
et al. [16], but now starting from the non-linear realigned
fMRI signals, which are detrended using a first order poly-
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Fig. 6. TPR and FPR curves for the OLS-CO/t-, MW-, and CvM-tests using the BAMM data set. The FDR extension is used to perform the serial
correlation correction. (a) and (b) depict the TPR curves as a function of noise-level, while (c) displays the FPR values. The same conventions are used as
in Fig. 3.
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nomial. Volumes are resliced to 1 mm3 voxels. The haemo-
dynamic delay for monkeys is estimated at 8 s [39]. The
MW- and CvM-tests are applied to the same fMRI signals
used for the SPM99 analysis. When analysing the grey mat-
ter fMRI signals using an AR(1) model, we found that a
lag 2 FDR correction was mandatory. For the application
of our novel method, we replaced in the SPM analysis pro-
cedure only the GLM/t calculation by the FDR-based
MW/CvM calculation.

For the sake of clarity, the results shown are limited to a
small set of axial slices. As contrast, we use 3D versus 2D
motion and a threshold of p < 0:001 for either method.
Uncorrected p-values are used here to avoid any influence
from a statistical inference method. Looking at Fig. 7,
identical regions are detected in general by either analysis.
However, the size and shape of the regions does differ. The
regions obtained using nonparametric statistical tests are
smaller and are better delineating the anatomical/function-
al areas due to the absence of smoothing. This smoothing
was introduced by SPM99 (GLM approach) to obtain
valid results. Using nonparametric statistics we are no
longer forced to smooth our data by a given factor as
required with GLM-based analyses, but we can now omit
smoothing or specify the amount of smoothing to optimise
the signal-to-noise ratio (SNR) without being bothered by
other constraints. Small regions are also no longer fused
together, but clearly separated, thereby indicating the exis-
tence of separate functional regions as was to be expected
[16].

In addition to this qualitative comparison, we performed
a small quantitative comparison by using the coordinates of
the local maxima for some well-known functional areas.
Table 1 gives an overview of these maxima as found by
SPM99-, MW-, and CvM-based analyses. The areas and
SPM99 coordinates are adapted from Vanduffel et al. [16]
since we applied a different realignment procedure. The
corresponding coordinates for the nonparametric methods
are found by searching the local maximum in the neigh-
bourhood of the SPM99 coordinates. This comparison
shows the advantage offered by applying different kinds



Table 1
Quantitative comparison of the SPM99-, MW-, and CvM-analysis: the coordinates (in mm3) of local maxima and corresponding statistical values are
shown for some of the functional areas found in the 3D-SFM monkey data set using the 3D versus 2D motion contrast (MTr=MTl ¼ right and left part of
the middle temporal area; V 4r=V 4l ¼ right and left part of the fourth visual area)

Area SPM99 MW CvM

[x,y,z] t [x,y,z] T1 [x,y,z] T2

MTr 21, �2, 15 9.69 21, �3,15 5.75 21, �3, 15 3.69
MTl �19, �4, 16 7.09 �19, �4, 16 5.17 �19, �4, 16 2.86
V4r 25, �4, 22 10.72 24, �4, 21 5.75 24, �4, 21 2.79
V4l �23, �2, 21 3.49 �18, �6, 21 3.99 �18, �6, 22 2.17

Fig. 7. Qualitative comparison of the results obtained using (a) SPM99, (b) the MW, and (c) the CvM method for the monkey 3D-SFM data set. For all
methods a threshold of p < 0:001 on uncorrected p-values was used. The numbers in the upper right corner of the figures represent the coordinate of that
slice in mm. Identical slices are displayed for each method. One can notice that the regions as detected by the non-parametric statistical analyses better
match with the anatomy than the results obtained with the parametric analysis where some regions are fused together, e.g., in the right posterior part.
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of (nonparametric) statistical tests. With respect to the
local maxima of areas MTr (the right part of the middle
temporal area) and V4r (the right part of the fourth visual
area), which are both known to be active for this contrast
[16], we see that the MW-test declares them equally active,
while the CvM-test declares them differently active. This
indicates that the ratio of the average activation for per-
ceiving 2D stimuli and 3D stimuli is similar for both areas,
while the ratio of the distribution of the activation is differ-
ent. In such cases, a more detailed look at the raw time ser-
ies can reveal additional information about the exact
behaviour of the respective areas with respect to the used
stimuli. Without our extension, a statistical analysis using
distribution-based test would not be possible and such dif-
ferences in brain-responsiveness over time could go
unnoticed.

4. Discussion

The experiments performed demonstrate that the
method of splitting the time series to deal with temporal
autocorrelations or serial correlations decreases the false
positive rate, independently of the applied extension.
Using the true and false positive rates (ROC curves),
the synthetic data and the permutation test as a refer-
ence, we showed that only the FDR extension controls
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the false positive rate in an adequate manner and for
reasonable values of smax. In general, our simulations
show and/or confirm that (a) in correspondence to what
theory predicts [31], the classic OLS-based test outper-
forms the nonparametric tests with respect to its power
whenever the data is derived from a Gaussian process
(Fig. 2(b)); (b) the TPR values obtained with the non-
parametric statistical tests better match those obtained
with the OLS(-CO)/t values in cases where the data is
derived from a non-Gaussian process, like the BAMM
data set; and (c) that, independently from the data set
used, a lag smax; ¼ 3 FDR correction has an identical
or even better FPR control than the OLS-CO/t-test, as
can be deduced from the TPR and FPR curves.

We proposed also an objective method based on the
PACF, to determine the smax value using an AR(k) model
of the right order k. fMRI noise signals or the error series
obtained by using a GLM model are used as input for this
AR(k) model. Albeit that a GLM/OLS is used in the latter
case to find this error, a possible improper application of
this method, due to the fact that some assumptions are
not met, has no influence on the final results since this
GLM is only used to estimate the integer smax. For both
the synthetic AR(1) autocorrelated Gaussian noise and
the BAMM data set, a smax ¼ 3 correction controls the
false positive rate appropriately.

With respect to the lower sensitivity (TPR values) of the
nonparametric tests (even the permutation test) in compar-
ison to those obtained with the OLS-CO/t approach, we
can mention two arguments in defence of them:

• Application of an identical HRF model for both the cre-
ation of the synthetic signals and their analysis clearly
favours the GLM-based methods. In practice, the exact
HRF is not known and an estimate is used, if not a
template.

• As mentioned before, the OLS-based tests are rather
optimistic [11]. This behaviour is confirmed by the
OLS/t permutation test that clearly has less power than
the OLS(-CO)/t-test (Fig. 3(a) and (b)).

In addition to the decreased sensitivity, the proposed
extension has two other, albeit minor, disadvantages. First,
the extension is only applicable for block design fMRI
studies and not for event-related fMRI studies, since our
method splits each epoch into (several) parts. Second, con-
trary to the GLM-based methods that employ a design
matrix to model all known effects, nonparametric statistical
tests do not allow the modelling of additional effects like
eye movements or cardio-respiratory activity. A possible
solution with respect to the nonparametric tests is to apply
a statistical test that checks for any relationship between
the selected time series and the assumed effects. A warning
for the researcher can then be issued in case a given thresh-
old is exceeded. Nonparametric equivalents, such as a
Cochran test or a Friedman test [31], are a possible
solution.
We also stress that the proposed extension is used on
single runs. Random or fixed effects analyses are not direct-
ly possible using the proposed methods. The GLM-based
approach allows to design random/fixed effects analyses
in a hierarchical way without the need for large and time
consuming calculations [15]. The here proposed nonpara-
metric statistics cannot calculate intra-run or intra-subject
variability. We think that the use of confidence intervals
for the difference between two means [31] (i.e., the means
of fX ig and fY ig as defined in Section 2.4) can offer a var-
iability estimate. More research needs to be done to find,
examine, and verify such methods. However, this research
falls outside the scope of this article.

Finally, a current line of research exists that might ren-
der the FDR technique even more promising: Yekutieli and
Benjamini are developing hierarchical extensions to the
basic FDR principle (personal communication) that allows
one to include information, gathered while investigating
part of the problem (i.e., the serial correlation correction
method), into the procedure that calculates the adjusted
p-values for the complete problem (i.e., the spatial multiple
comparison correction). This path of research might return
a solution yielding a higher sensitivity while still keeping
the FPR within bounds.

5. Conclusion

Traditionally, a GLM is used to analyse fMRI data.
However, the question remains whether a GLM approach
is valid given the underlying Gaussian and linear assump-
tions. Specific pre-processing operations like data-smooth-
ing [10,15] are necessary to help the data meet the required
assumptions. We started investigating nonparametric sta-
tistical tests, to avoid such pre-processing operations since
they could affect the final results. Moreover, from a formal
perspective, nonparametric tests are the only kind of statis-
tical tests that are guaranteed to be valid and exact in cases
where the nature of the distribution is unknown [5].

We have developed an FDR-based extension that
enables the application of EDF-like nonparametric tests
(Kolmogorov–Smirnov, Cramér–von Mises, and Mann–
Whitney) to fMRI data by appropriately handling the seri-
al correlations within fMRI signals. In comparison with
the GLM-based tests that are solved using an OLS, we
spotted a significant decrease in statistical power. However,
these OLS-based approaches are known to return too opti-
mistic results [11], and they should also be applied with
great care given their assumptions that require, e.g., a
Gaussian distribution of the regression error. Using non-
parametric tests we do not have to consider these assump-
tions, nor do we have to know the exact nature of the
distribution. Furthermore, our experiments show that the
performance of an FDR extended nonparametric test very
well coincides with that of the corresponding permutation
test, and even with that of the GLM-based permutation
test. Whenever a statistically valid analysis is aspired, we
could therefore consider nonparametric tests.
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In comparison to other nonparametric tests like the
Bayesian approaches or the permutation test, our extension
takes only a few additional seconds with respect to the
unextended tests. Our method allows thus for a major
speedup of the whole analysis when nonparametric tests
are selected for analysing fMRI data. In addition, the pro-
posed extension enables the application of EDF tests
(Kolmogorov–Smirnov and Cramér–von Mises) to fMRI
data. These EDF tests return more information from a
fMRI signal as shown in Table 1, since they compare the dis-
tributions of the data points recorded under different stimu-
li, rather than the mean/median of those data points (GLM-
approach/Mann–Whitney, respectively). Lange and co-
workers have already mentioned that the application of a
range of statistical procedures, parametric and data-driven,
linear and nonlinear, would be most useful [12]. Regions
might show an equal average level of activity, but a different
distribution of the observed activation (see Table 1). The
application of e.g., the Cramér–von Mises in addition to a
Mann–Whitney test is therefore certainly a source of
valuable, additional information for the researcher.
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Appendix A. Rank-order tests

A.1. Mann–Whitney test

The hypothesis of the Mann–Whitney test (MW) states
that both samples of data points have an identical median.
Given fX ig and fY ig, containing Nx and Ny data points
respectively, a set of data points fZig ¼ fX ig

S
fY ig is cre-

ated and a rank assigned to the respective data points of
fX ig and fY ig. The statistical value is calculated using
Eq. (5), where N ¼ Nx þ N y and

PN
i¼1R2

i represents the
sum of squares of all N ranks [31]. The significance values
(p-values) are easy to calculate since T 1 is approximately a
standard normal random variable [31], to which well-
known Gaussian formulae are applicable.

T 1 ¼
T � N x

Nþ1
2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

NxNy

NðN�1Þ
PN

i¼1R2
i �

NxNy ðNþ1Þ2
4ðN�1Þ

q ; T ¼
XNx

k¼1

RðX kÞ: ð5Þ
A.2. Kolmogorov–Smirnov and Cramér–von Mises test

The Kolmogorov–Smirnov (KS) and Cramér–von Mises
test (CvM) have an identical null hypothesis, namely that
both samples have an identical distribution. Using the same
notation, we represent fX ig and fY ig by their respective
EDF: S1ðxÞ and S2ðxÞ. The EDF SðxÞ represents the fraction
of X is that are less than or equal to x [31]. The hypothesis is
verified using the deviations between these EDFs:
dk ¼ S1ðxkÞ � S2ðxkÞ, for k ¼ 1; . . . ; ðN x þ NyÞ. The differ-
ence between the KS- and CvM-test lies in the way the devi-
ations, dks, are interpreted: the statistical value for the KS-
test is simply supðjdkjÞ, while the statistical value for the
CvM-test, T 2, is based on all dks, as shown in Eq. (6):

T 2 ¼
NxN y

ðN x þ N yÞ2
X

xk2fX ig[fY ig
ðS1ðxkÞ � S2ðxkÞÞ2: ð6Þ

The difference in definition causes also a difference in the
range of the statistical values: [0, 1] for the KS-test, and
½0;1Þ for the CvM-test. These ranges do not contain any
absolute information about the significance. The calcula-
tion of the significance value p is rather complex [40–42]
and can be obtained upon request from the authors.
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